首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15600篇
  免费   2807篇
  国内免费   4696篇
测绘学   2197篇
大气科学   3568篇
地球物理   3355篇
地质学   6250篇
海洋学   2974篇
天文学   1405篇
综合类   1386篇
自然地理   1968篇
  2024年   40篇
  2023年   186篇
  2022年   540篇
  2021年   617篇
  2020年   802篇
  2019年   792篇
  2018年   685篇
  2017年   814篇
  2016年   841篇
  2015年   979篇
  2014年   939篇
  2013年   1112篇
  2012年   1056篇
  2011年   1013篇
  2010年   833篇
  2009年   961篇
  2008年   1080篇
  2007年   1269篇
  2006年   1223篇
  2005年   1077篇
  2004年   897篇
  2003年   752篇
  2002年   679篇
  2001年   490篇
  2000年   639篇
  1999年   603篇
  1998年   462篇
  1997年   322篇
  1996年   265篇
  1995年   215篇
  1994年   190篇
  1993年   175篇
  1992年   151篇
  1991年   95篇
  1990年   57篇
  1989年   78篇
  1988年   46篇
  1987年   35篇
  1986年   35篇
  1985年   17篇
  1984年   12篇
  1983年   4篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1954年   4篇
  1877年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Victoria Beach (Cadiz, Spain) comprises a rocky flat outcrop in its northern zone and a sand-rich southern zone. These natural features allowed for a 5-year monitoring period and subsequent analysis of two different profiles (one in each zone) based on differences in bottom contours. Topo-bathymetric data were analysed using empirical orthogonal functions (EOFs) to determine changes over the short-, medium- and long-term. Several morphologic phenomena were identified (generalised erosion, seasonal or summer–winter tilting of the profile around different hinge points, berm development and its posterior destruction, etc.) in terms of their importance in explaining the variability of the collected data for both profiles. It is worth mentioning that both profiles undergo parallel regression in the medium-term. Thus, the 1st eigenfunction enabled us to identify the true regression of the beach shoreline, independent of seasonal or summer–winter slope changes. Reconstruction of profiles using EOF components demonstrated that though accretion periods in the medium-term were similar for both types of profiles, the accretion speed was much faster in the sand-rich profile than in the reef-protected profile (1.01 m3/day versus 0.33 m3/day). Moreover, the seasonal erosion rate and the subsequent shoreline retreat for the sand-rich profile were much larger than for the reef-protected profile (121 m3/year versus 29 m3/year). Analysis in the short-term (changes induced by a single day's storm) showed an instantaneous tilting of the profile, with the mobilised sand volume being much greater for the sand-rich than for the reef-protected profile (68 m3/m versus 12 m3/m).  相似文献   
962.
Large‐scale engineering computing using the discontinuous deformation analysis (DDA) method is time‐consuming, which hinders the application of the DDA method. The simulation result of a typical numerical example indicates that the linear equation solver is a key factor that affects the efficiency of the DDA method. In this paper, highly efficient algorithms for solving linear equations are investigated, and two modifications of the DDA programme are presented. The first modification is a linear equation solver with high efficiency. The block Jacobi (BJ) iterative method and the block conjugate gradient with Jacobi pre‐processing (Jacobi‐PCG) iterative method are introduced, and the key operations are detailed, including the matrix‐vector product and the diagonal matrix inversion. Another modification consists of a parallel linear equation solver, which is separately constructed based on the multi‐thread and CPU‐GPU heterogeneous platforms with OpenMP and CUDA, respectively. The simulation results from several numerical examples using the modified DDA programme demonstrate that the Jacobi‐PCG is a better iterative method for large‐scale engineering computing and that adoptive parallel strategies can greatly enhance computational efficiency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
963.
The problem of predicting the geometric structure of induced fractures is highly complex and significant in the fracturing stimulation of rock reservoirs. In the traditional continuous fracturing models, the mechanical properties of reservoir rock are input as macroscopic quantities. These models neglect the microcracks and discontinuous characteristics of rock, which are important factors influencing the geometric structure of the induced fractures. In this paper, we simulate supercritical CO2 fracturing based on the bonded particle model to investigate the effect of original natural microcracks on the induced‐fracture network distribution. The microcracks are simulated explicitly as broken bonds that form and coalesce into macroscopic fractures in the supercritical CO2 fracturing process. A calculation method for the distribution uniformity index (DUI) is proposed. The influence of the total number and DUI of initial microcracks on the mechanical properties of the rock sample is studied. The DUI of the induced fractures of supercritical CO2 fracturing and hydraulic fracturing for different DUIs of initial microcracks are compared, holding other conditions constant. The sensitivity of the DUI of the induced fractures to that of initial natural microcracks under different horizontal stress ratios is also probed. The numerical results indicate that the distribution of induced fractures of supercritical CO2 fracturing is more uniform than that of common hydraulic fracturing when the horizontal stress ratio is small.  相似文献   
964.
The method of smoothed particle hydrodynamics (SPH) has recently been applied to computational geomechanics and has been shown to be a powerful alternative to the standard numerical method, that is, the finite element method, for handling large deformation and post‐failure of geomaterials. However, very few studies apply the SPH method to model saturated or submerged soil problems. Our recent studies of this matter revealed that significant errors may be made if the gradient of the pore‐water pressure is handled using the standard SPH formulation. To overcome this problem and to enhance the SPH applications to computational geomechanics, this article proposes a general SPH formulation, which can be applied straightforwardly to dry and saturated soils. For simplicity, the current work assumes hydrostatic pore‐water pressure. It is shown that the proposed formulation can remove the numerical error mentioned earlier. Moreover, this formulation automatically satisfies the dynamic boundary conditions at a submerged ground surface, thereby saving computational cost. Discussions on the applications of the standard and new SPH formulations are also given through some numerical tests. Furthermore, techniques to obtain the correct SPH solution are also proposed and discussed throughout. As an application of the proposed method, the effect of the dilatancy angle on the failure mechanism of a two‐sided embankment subjected to a high groundwater table is presented and compared with that of other solutions. Finally, the proposed formulation can be considered a basic formulation for further developments of SPH for saturated soils. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
965.
Reef development varies considerably around the high, raised‐limestone islands of the Commonwealth of the Northern Mariana Islands (CNMI). Here we examine the modern assemblages at 30 sites for coral composition, colony density, colony size, and fidelity. We defined four reef types and hypothesize the presence of environmentally driven ecological stasis, whereby the environment continuously selects for coral species membership, defines colony sizes, and over time creates the noted reef types. Our results show that constructional spur‐and‐groove reefs supported significantly larger coral‐colony sizes and higher coral species richness compared with high‐relief interstitial framework, low‐relief incipient, and non‐constructional coral assemblages. Non‐constructional reefs supported much smaller coral colony sizes, despite similar population densities, and were consistently found in association with high wave exposure. The distinct coral assemblages found on interstitial framework and low‐relief incipient reefs were not affiliated with any wave exposure regime, but were located adjacent to large watersheds and on islands with unique geological history. These assemblages were nested within the spur‐and‐groove species pool. Overall, modern coral cover was well predicted by bathymetric slope and watershed size, while species richness was additively influenced by two proxies of pollution, suggesting the latter is better suited for establishing management targets. In contrast with previous studies that suggested modern assemblages were biologically controlled in the CNMI, we show reef assemblages and reef development are highly influenced by long‐term environmental forcing.  相似文献   
966.
During several triaxial compression experiments on plastic hardening, softening, and failure properties of dense sand specimens, it was found on various stress paths that the size of the failure surface was not constant. Instead, it changed depending on the current state of hydrostatic pressure. This finding is in contrast to the standard opinion consisting of the fact that the failure surface remains constant, once it has been reached during an experiment or in situ. In general, the behaviour of cohesionless granular‐material‐like sand is somehow characterised in between fluid and solid, where the solid behaviour results from the angle of internal friction and the confining pressure. Although the friction angle is an intrinsic material property, the confining pressure varies with the boundary conditions, thus defining different solid properties like plastic hardening, softening, and also failure. Based on our findings, it was the goal of the present contribution to introduce an improved setting for the plastic strain hardening and softening behaviour including the newly found yield properties at the limit state. For the identification of the material parameters, a complete triaxial experimental analysis of the tested sand is given. The overall elasto‐plasticity concept is validated by numerical computations of several laboratory foundation‐ and slope‐failure experiments. The performance of the proposed approach is compared with the standard concept of a constant failure surface, where the corresponding yield surfaces are understood as contours of equivalent plastic work or plastic strain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
967.
Climatic changes have altered surface water regimes worldwide, and climate projections suggest that such alterations will continue. To inform management decisions, climate projections must be paired with hydrologic models to develop quantitative estimates of watershed scale water regime changes. Such modeling approaches often involve downscaling climate model outputs, which are generally presented at coarse spatial scales. In this study, Coupled Model Intercomparison Project Phase 5 climate model projections were analyzed to determine models representing severe and conservative climate scenarios for the study watershed. Based on temperature and precipitation projections, output from GFDL‐ESM2G (representative concentration pathway 2.6) and MIROC‐ESM (representative concentration pathway 8.5) were selected to represent conservative (ΔC) and severe (ΔS) change scenarios, respectively. Climate data were used as forcing for the soil and water assessment tool to analyze the potential effects of climate change on hydrologic processes in a mixed‐use watershed in central Missouri, USA. Results showed annual streamflow decreases ranging from ?5.9% to ?26.8% and evapotranspiration (ET) increases ranging from +7.2% to +19.4%. During the mid‐21st century, sizeable decreases to summer streamflow were observed under both scenarios, along with large increases of fall, spring, and summer ET under ΔS. During the late 21st century period, large decreases of summer streamflow under both scenarios, and large increases to spring (ΔS), fall (ΔS) and summer (ΔC) ET were observed. This study demonstrated the sensitivity of a Midwestern watershed to future climatic changes utilizing projections from Coupled Model Intercomparison Project Phase 5 models and presented an approach that used multiple climate model outputs to characterize potential watershed scale climate impacts.  相似文献   
968.
孙小真  刘志刚 《海洋科学》2010,34(10):62-67
对马氏珠母贝人工育苗换水、投附着基和饵料等关键环节进行了研究。结果表明:(1)不换水组的D形幼虫及壳顶幼虫的存活率,稚贝育成率以及D形幼虫、壳顶幼虫及稚贝壳长日生长率比换水组分别提高了15.3%、259.6%、186.5%、33.3%、34.2%、12.4%,且差异显著;(2)第1、2次投附着板组的稚贝壳长日生长率均比一次性投附着板组快,第3次投附着板组的壳长日生长率比其他所有组均慢,且差异均显著。多次投附着板组的同一批次稚贝均匀度均比一次性投附着板组好,且多次投附着板组比一次性投附着板组的稚贝育成率提高了32.5%,稚贝存活率提高了19.3%,采苗量提高了35%;(3)投喂虾塘水组稚贝存活率、育成率及壳长日生长率比投喂50%自溶酵母+50%小球藻组分别提高了28.1%、47.2%、35.9%,而投喂这两种不同饵料的稚贝阴干后的存活率差异不显著。研究表明,通过封闭不换水育苗、多次投附着板及投喂虾塘水中的生态饵料的方法可以高效地培育出健康的马氏珠母贝种苗。  相似文献   
969.
Sustainable water resources management require scientifically sound information on precipitation, as it plays a key role in hydrological responses in a catchment. In recent years, mesoscale weather models in conjunction with hydrological models have gained great attention as they can provide high‐resolution downscaled weather variables. Many cumulus parameterization schemes (CPSs) have been developed and incorporated into three‐dimensional Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model 5 (MM5). This study has performed a comprehensive evaluation of four CPSs (the Anthes–Kuo, Grell, Betts–Miller and Kain–Fritsch93 schemes) to identify how their inclusion influences the mesoscale model's precipitation estimation capabilities. The study has also compared these four CPSs in terms of variability in rainfall estimation at various horizontal and vertical levels. For this purpose, the MM5 was nested down to resolution of 81 km for Domain 1 (domain span 21 × 81 km) and 3 km for Domain 4 (domain span 16 × 3 km), respectively, with vertical resolutions at 23, 40 and 53 vertical levels. The study was carried out at the Brue catchment in Southwest England using both the ERA‐40 reanalysis data and the land‐based observation data. The performances of four CPs were evaluated in terms of their ability to simulate the amount of cumulative rainfall in 4 months in 1995 representing the four seasonal months, namely, January (winter), March (spring), July (summer) and October (autumn). It is observed that the Anthes–Kuo scheme has produced inferior precipitation values during spring and autumn seasons while simulations during winter and summer were consistently good. The Betts–Miller scheme has produced some reasonable results, particularly at the small‐scale domain (3 km grid size) during winter and summer. The KF2 scheme was the best scheme for the larger‐scale (81 km grid size) domain during winter season at both 23 and 53 vertical levels. This scheme tended to underestimate rainfall for other seasons including the small‐scale domain (3 km grid size) in the mesoscale. The Grell scheme was the best scheme in simulating rainfall rates, and was found to be superior to other three schemes with consistently better results in all four seasons and in different domain scales. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
970.
Dynamic and quasi-static models for analysis of a pipe lay spread are presented in the paper. Depending on the type of a pipe, spooling it on a big drum (reel) may cause plastic deformations. When the pipe is reeled out at sea, again it undergoes plastic deformations. In order to model such a nonlinear behaviour, a model, which includes both elasto-plastic material characteristics and large deformations, is required. Discretisation of the pipe is performed by means of the Rigid Finite Element Method (RFEM), which allows us to study static and dynamic problems, taking into account required properties of the model. Different sea conditions are simulated and analysed. It is shown how operational conditions can limit the ability of laying operation by a dedicated vessel, due to an unstable system response. The second part of the paper presents an upgrade of a passive reel drive by application of an active drive. In the model used for control applications, the pipe is modelled by a neural network. This allows us to perform a real-time calculations. In this fast-response calculation model, nonlinear aspects of the system are taken into account. The improvements in a pipe laying vessel performance are presented by some results of numerical simulations. The conclusions are also formulated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号